Introduction

- ALICE: experiment at CERN LHC.
- ITS Upgrade Project: replace Inner Tracker System.
 - Goal: design & implementation of new cooling system.

PROJECT SCHEDULE

2012-2014 **R&D phase**

- **2012**: Study technology proposals.
- **2013**: Selection of technologies. Qualification studies.
- **2014**: Final design and validation. Integration & final testing.

2015-2018 **Construction and Installation**

5/8/2013

M. Gómez Marzoa
Introduction

Inner Tracker System (ITS): two-barrel, 7-layer structure

INNER BARREL (3 layers)

OUTER BARREL (4 layers)

ONLY ONE EXTREMITY ACCESSIBLE!
Charged and neutral particles cross pixel modules, leaving:

1. **Ionizing current**: signal
2. **Non-ionizing current**: radiation damage → energy loss

Detector module: STAVE

Inner Barrel geometrical constraints.

Full ITS sectional view.
Introducción

Stave mechanical/cooling design:

1. **Power dissipation** = \(f(\text{pixel technology, electronics, read-out, ...}) \)
2. Operational **temperature** and uniformity.
3. **Minimize material budget:** critical in detector design.

\[
\frac{x}{X_0} 100[\%]
\]

\[
X_0 = \frac{716.4 \cdot A}{Z(Z + 1) \ln \frac{287}{\sqrt{Z}} \rho} [cm]
\]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Inner Barrel</th>
<th>Outer Barrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power density to dissipate ([W , cm^{-2}])</td>
<td>(\approx 0.40)</td>
<td>(\approx 0.40)</td>
</tr>
<tr>
<td>Total material budget per layer ([% of X_0])</td>
<td>(\leq 0.30)</td>
<td>(\leq 0.80)</td>
</tr>
<tr>
<td>Operation temperature ([^\circ C])</td>
<td>(< 30) (dew point: 13(^{\circ}C))</td>
<td>(\approx 10)</td>
</tr>
<tr>
<td>Pixel max. temperature non-uniformity ([K])</td>
<td>(\approx 10)</td>
<td></td>
</tr>
</tbody>
</table>
Project Objectives

Innovative Lightweight Cooling Systems for the Upgrade of the Inner Tracker System (ITS) of the ALICE Experiment at CERN

- Study, develop, qualify and integrate ITS Upgrade cooling system.
- R&D on minimal material budget detector cooling technologies.
 - High-conductivity, light-weight materials.
 - Plastic piping for cooling.
 - Impact of material budget fluctuation of a two-phase flow.
- Provide ALICE ITS Upgrade with a lightweight cooling system as project final deliverable.
State of the Art

Cooling systems in high-energy particle detectors

<table>
<thead>
<tr>
<th>System</th>
<th>Solution</th>
<th>Detector</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Cooling</td>
<td>High-conductive structure as cooling ducts</td>
<td>STAR</td>
<td>Low power dissipation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vibrations</td>
</tr>
<tr>
<td>Single-phase liquid cooling</td>
<td>Cooling pipe + carbon foam</td>
<td>IBL Outer layers Present ITS outer layers</td>
<td>$\uparrow x/X_0$ Leakless (water)</td>
</tr>
<tr>
<td></td>
<td>Polyimide microchannels</td>
<td>ITS Upgrade</td>
<td>$\uparrow \Delta p$</td>
</tr>
<tr>
<td>Two-phase flow cooling</td>
<td>Channel</td>
<td>ATLAS I. Det.</td>
<td>Flow distribution</td>
</tr>
<tr>
<td></td>
<td>Channel CO$_2$</td>
<td>ATLAS/CMS Upgrades</td>
<td>Low temperatures</td>
</tr>
<tr>
<td></td>
<td>Heat pipes</td>
<td>ATLAS Pixel (proposal)</td>
<td>Integration $\uparrow x/X_0$</td>
</tr>
<tr>
<td></td>
<td>Si microchannels</td>
<td>ITS Upgrade</td>
<td>$\uparrow x/X_0$ Stave integration</td>
</tr>
</tbody>
</table>
State of the Art

Cooling technologies/materials

<table>
<thead>
<tr>
<th>Technology</th>
<th>Examples</th>
<th>Applications</th>
<th>Innovative features</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-conductivity materials</td>
<td>Carbon fiber, Graphite foils, Graphite foam</td>
<td>Thermal spreader</td>
<td>- Mechanical & thermal features</td>
</tr>
<tr>
<td>Small-scale plastic tubing</td>
<td>Polyimide, PEEK</td>
<td>Medical industry</td>
<td>- Erosion/aging, Cooling capabilities, Radioactive environments</td>
</tr>
<tr>
<td>Connectors/filters</td>
<td>Integration issues</td>
<td></td>
<td>- One end accessible, Out of detector area, Flow distribution</td>
</tr>
</tbody>
</table>
Inner Barrel Cooling proposals:

1. Air Cooling: CFD
 a) Layer-by-layer air cooling.
 b) Impinging jet proposal (w/ Univ. St. Petersburg).

2. Ultra Low-Mass Cooling Systems:
 a) Wound-truss structure.
 b) Wound-truss structure with high-conductivity plate.
 i. Cooling tubes over plate.
 ii. Cooling from stave extremities.
R&D phase

Inner Barrel Cooling proposals:

1. Air Cooling: CFD
 a) Layer-by-layer air cooling.
 b) Impinging jet proposal (w/ Univ. St. Petersburg).

2. Ultra Low-Mass Cooling Systems:
 a) Wound-truss structure.
 b) Wound-truss structure w/ high-conductivity plate.
 i. Cooling tubes over plate.
 ii. Cooling from stave extremities.

If \(q' \sim 0.1 \text{ W cm}^{-2} \)

Complex, risky, high air velocity through jet holes
R&D phase

ULTRA-LOW-MASS COOLING SYSTEMS

- **MATERIALS**: lowest material budget + integrity
 - **Structure**:
 - Carbon fiber (K13D2U, K1100): \(\lambda \) up to 1000 W m\(^{-1}\) K\(^{-1}\)
 - Graphite foil (30µm thick): \(\lambda > 1000 \) W m\(^{-1}\) K\(^{-1}\)
 - **Tubes**: Polyimide, PEEK (↓ wall thickness).

Analytical/CFD studies
Experimental tests
Optimization of 2 geometries
R&D phase

ULTRA-LOW-MASS COOLING SYSTEMS

P1: Wound-truss structure.

- $w=1.4 \text{ g}$
- Global $\frac{x}{X_0}=0.32\%$
- K13D2U-2k fibre width: 1.5mm
- Fibre winding angle: 23deg

Transversal section:
- Pipe (ID 1.450mm)
- Graphite sleeve (30μm)
- K13D2U-2k fibre (70μm)
- Silicon dummy (50μm)
- Glue (~ 100μm)
- Kapton® heater

P2: Wound-truss structure with high-conductivity plate.

- $w=1.7 \text{ g}$
- Global $\frac{x}{X_0}=0.36\%$
- M60J Truss filament diameter: 300μm

Top structure:
- Carbon fleece (20μm)
- Graphite foil (30μm)
- Cooling pipe (ID 1.450mm)
- Plate: K13D2U CF (70μm)
- Carbon fleece (20μm)
- Glue (~100μm)
- Kapton® heater
R&D phase

ULTRA-LOW-MASS COOLING SYSTEMS

- Prototype manufacturing and testing:
 - Mechanical tests.
 - **Thermal tests**: real performance of prototypes.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase water</td>
<td>Radiation hard Loop simplicity</td>
<td>Conductive: leak-less system Liquid: ↑ refrigerant x/X₀</td>
</tr>
<tr>
<td>Two-phase C₄F₁₀</td>
<td>Radiation hard Dielectric Vapor: ↓ refrigerant x/X₀ Cooling at constant T</td>
<td>More complex loop Distribution (340 staves ITS)</td>
</tr>
</tbody>
</table>

- 2 experimental loops to test 2 different concepts.
R&D phase

ULTRA-LOW-MASS COOLING SYSTEMS: EXP. SETUP

- Fast and simple way to assess prototype performance.
- Tested several prototype configurations with the 2 refrigerants.
R&D phase

ULTRA-LOW-MASS COOLING SYSTEMS: RESULTS

1. Little difference when cooling with water or C_4F_{10} (Fig. 1a)
2. Prototype performance not subject to flow rate/mass flux (Fig. 1)
3. Plate proto (P2) outperforms wound-truss stave (P1) (Fig. 1, 2)

Fig. 1: Difference max. temperature in heater-mean fluid temperature for P1 (a) and P2 (b).

Fig. 2: Results with C_4F_{10}: $G=250 \text{ kg m}^{-2} \text{ s}^{-1}$, $q'=0.3 \text{ W cm}^{-2}$
Current state of the work

1. Studied and tested several stave configurations, including:
 - Plate with squeezed pipes
 - No-pipes stave + cooling from extremities (low power only).

2. Made new proposal adhering to the requirements \(P2 \).
 - **Material budget:** to be reduced
 - Two-phase flow/reduce pipe size
 - Thin plate: \textbf{K1100-X} \((\lambda > 1000 \text{ W m}^{-1} \text{ K}^{-1})\)

3. **Outer Layers:** similar concept
 - Same power dissipation expected.
 - Layers 30 mm wide (2 x 15 mm).
 - 850-1500 mm long.
Future steps

1. Polyimide piping: robust and suitable under radioactivity.
 - **Erosion tests:** facility under construction (water).
 - Measurements before/after: wall thickness, ε, SEM...
 - Water analysis (suspensions)

2. Pipe integration:
 - Avoiding connectors (pipe bend)
 - Prevent pipe kinking/buckling: embed reinforcing coil/braid

3. Refrigerant: C_4F_{10} availability?
 - **Alternative:** R236fa (HFC)
 - Radiation impact?

(top) Single-pipe stave concept
(centre) Polyimide/Pebax® tube bend
(bottom) Composite polyimide+coil PTFE/Pebax®
Innovative Lightweight Cooling Systems for the Upgrade of the Inner Tracker System (ITS) of the ALICE Experiment at CERN

Enrico DA RIVA
Manuel GÓMEZ MARZOÁ

In collaboration with the ALICE ITS Upgrade Project