

Computational Fluid Dynamics team supports CERN development

CERN May 19th 2011

Who are we?

- The CFD activity started in EN/CV group around **1993**. From that on a group of young engineers (technical students, fellows, project associates, UPAS, trainee programmes) took over this activity spending short to medium periods at CERN.
- In 2003 when the TS department was created, the Cooling and Ventilation Group decided to structure this activity into a formal team inside the Detector Cooling Section.
- Nowadays, the team counts with an average of three-four members spending between one and five years in the team.
- The team uses STAR-CD and STAR-CCM+, in the last year we moved all our news project to STAR-CCM+ and, in the next future, to OpenFOAM.

Natural and forced convection heat transfer	ATLAS 3D HX15 and muon chambers cooling, ALICE Muon, ALICE L3 ventilation	Some chamber need an additional cooling source: a thermal screen will be implemented. Definition of the ventilation scheme of new L3 rails.
Air cooling	RF-Cavity cooling, CNGS Horn and Reflector air cooling analysis, LINAC4 ventilation, Bdg 513 ventilation of the grid computer room.	Cavity geometry design has been modified. Additional gaps in the shielding walls, trenches on the target chamber floor. Number and position of ventilator diffuser has been optimized. Server Rack cold corridors has been closed.
Water cooling	SPS magnet cooling analysis	Exact definition of the heat power evacuated by cooling water and air.
Safety	CNGS tunnel : flow analysis in case of decay tunnel cap rupture. The Globe : fire effect simulation, transient temperature distribution.	Special duct installation to resist to high pressure and move the high speed point in a safe zone of ECA4 cavern.
Gas distribution	ATLAS Inner Tracker CO_2 and N_2 flow analysis. Flushing time estimation before cooling	Definition of the inlet points position and the time to complete the flush.
Pollutant dispersion	ISOLDE activated gas decay, HirRadMat activated gas flashing time.	Define the time needed to flash the tunnel before human access.
Humidity distribution	CMS Tracker flow analysis.	Reduction of inlet points from 8 to 1.

Natural and forced convection heat transfer	ATLAS 3D HX15 and muon ALICE Muon, ALICE L3 ven	chambers cooling, tilation	Some chamber need an additional cooling source: a thermal screen will be implemented. Definition of the ventilation scheme of new L3 rails.			
Air cooling	RF-Cavity cooling, CNGS H cooling analysis, LINAC4 ven ventilation of the grid comput	orn and Reflector air tilation, Bdg 513 ter room.	Cavity geometry design has been modified. Additional gaps in the shielding walls, trenches on the target chamber floor. Number and position of ventilator diffuser			
ALICE L3- Ventilation Rails			has been optimized. Server Rack cold corridors has been closed.			
		(B)	Exact definition of the heat power evacuated by cooling water and air.			
ase of decay tun ect simulation,			Special duct installation to resist to high pressure and move the high speed point in a safe zone of ECA4 cavern			
Pollutant dispersion	ISOLDE ACTIVATED GAS DECAY gas flashing time.	ATLAS UX15 Cavern				
Humidity distribution	CMS Tracker flow analysis.	J. J				

Natural and forced convection heat transfer	ATLAS 3D HX15 and muon chambers cooling, ALICE Muon, ALICE L3 ventilation	Some chamber need an additional cooling source: a thermal screen will be implemented. Definition of the ventilation scheme of new L3 rails.
Air cooling	RF-Cavity cooling, CNGS Horn and Reflector air cooling analysis, LINAC4 ventilation, Bdg 513 ventilation of the grid computer room.	Cavity geometry design has been modified. Additional gaps in the shielding walls, trenches on the target chamber floor. Number and position of ventilator diffuser has been optimized. Server Rack cold corridors has been closed.
Water cooling	SPS magnet cooling analysis LINAC-4 Klystron Hall	
Safety	CNGS tunnel : flow analysis in case of de cap rupture. The Globe : fire effect simu transient temperature distribution.	
Building 513		
		Reduction of inlet points from 8 to 1.

19 May 2011

Natural and forced convection heat transfer	ATLAS 3D HX15 and muon chambers cooling, ALICE Muon, ALICE L3 ventilation	Some chamber need an additional cooling source: a thermal screen will be implemented. Definition of the ventilation scheme of new L3 rails.			
Air cooling	RF-Cavity cooling, CNGS Horn and Reflector air cooling analysis, LINAC4 ventilation, Bdg 513 ventilation of the grid computer room.	Cavity geometry design has been modified. Additional gaps in the shielding walls, trenches on the target chamber floor. Number and position of ventilator diffuser has been optimized. Server Rack cold corridors has been closed.			
Water cooling	SPS magnet cooling analysis	Exact definition of the heat power evacuated by cooling water and air.			
Safety Gas distribution Pollutant dispersio Humidity distributi	CNGS tuppel: flow analysis in case of docay tuppel	Special duct installation to rocist to high pro-STAR 3.2 Pro-STAR 3.2			

CFD team						
CFD i	s usef			R.	at C	ERN
Natural and forced convection heat transfer	ATLAS 3D HX1 ALICE Muon, /			318,724 313,857 313 310,143 307,286 304,429 304,571 298,734 295,557 293	chamber need e: a thermal so mented. tion of the ver ls.	d an additional cool creen will be ntilation scheme of
Air cooling	RF-Cavity coo cooling analysis ventilation of th				v geometry de onal gaps in th tes on the targ er and positio een optimized ors has been o	sign has been modi ne shielding walls, get chamber floor. n of ventilator diffu . Server Rack cold closed.
Water cooling	SPS magnet o				definition of tl ated by coolin	he heat power g water and air.
Safety	CNGS tunnel : cap rupture. Th transient tempe	flow analysis in case of e Globe : fire effect sine and the sine of the sine	f decay tunnel mulation,	Specia pressi a safe	al duct installa ure and move e zone of ECA4	tion to resist to hig the high speed poir cavern.
Gas distribution	ATLAS Inner T Flushing time es	Fracker CO_2 and N_2 flost stimation before coolin	w analysis. g	Defini the tii	tion of the inle me to complet	et points position ar e the flush.
Pollutant dispersion	ISOLDE activated gas decay, HirRadMat activated gas flashing time.			Define the time needed to flash the tuni before human access.		
Humidity distribution	CMS Tracker fl	ow analysis.		Reduc	tion of inlet p	oints from 8 to 1.

CERN

in

Natural and forced	ATLAS 3D HX15 and muon chambers cooling,	Some chamber need an additional cooling
Conv Air c Wate Safe	Constant of the second	provide the second seco
Gas distribution	ATLAS Inner Tracker CO_2 and N_2 flow analysis. Flushing time estimation before cooling	Definition of the inlet points position and the time to complete the flush.
Pollutant dispersion	ISOLDE activated gas decay, HirRadMat activated gas flashing time.	Define the time needed to flash the tunnel before human access.
Humidity distribution	CMS Tracker flow analysis.	Reduction of inlet points from 8 to 1.

What we do?

- Mission of the team is to give support to LHC machine and detectors performing CFD studies during the prototype, design, development and operation phases of their components
- Resources

- Example studies:
 - CAST
 - Assessment of measurement uncertainty
 - RF Cavity cooling
 - Numerical prototyping aiding the design
- CFD evolution at CERN

