CAST: CERN Axion Solar Telescope

3He Gas System CFD simulations

2. Problem Description.
3. Results.
4. Model Revision.
 - Validation
5. Summary.

CFD team supports CERN development
19 May 2011
Technical specifications: Gas System

CAST: detects solar axions → LHC Magnet Magnetic field: Conversion from axions into X-Rays occurs in closed volume filled with 3He gas at low T (~1.8K) and low P (~10-100 mbar)

• Parts outside cryostat receive heat from environment → 3He gas heats up: convective flow.

REQUIREMENTS: uniform density field along CB’s (Effective measure length)

TARGETS:

- Provide 3He density plots in CB’s.
- Verify validity of existing CFD studies.
- Study model’s movement: tilting and rotation.
Problem description: characteristics

- **Boundary conditions (BC’s) not known everywhere in the volume.**
- **Uncertainty** of sensors

- Gas density **NOT ACTUALLY MEASURABLE**
- Lack of experimental data

Assumptions

- Choice of BC’s determine the accuracy of the computed solution compared to the real situation

Expected phenomena:

- Strong **buoyancy-driven flow** in CB ends: T_{windows}, $T_{\text{Metal}} > T^{3}\text{He}$.
- **Transitional regime.**

Recirculation ⬅️ **Gas is still Uniform density expected**
Problem description: gas physics

Reference \(^3\)He conditions:
- \(P_{\text{Ref}} < 140\) mbar
- Static \(T_{\text{\(^3\)He}} \sim 1.8\) K

\(P, T\) far from Ideal Gas range of applicability.

Real Gas vs. Ideal Gas: eq. of state
- Virial Equation (physical description)
- Peng-Robinson.
- Van der Waals Model.

Comparing the four gas models.

Drift between Van der Waals model (red) and experimental data (blue)
Problem description: gas physics

Reference 3He conditions:
- \(P_{\text{Ref}} < 140 \) mbar
- Static \(T_{^3\text{He}} \approx 1.8 \) K

\(P, T \) far from Ideal Gas range of applicability.

Real Gas vs. Ideal Gas: eq. of state

- Virial Equation (physical description)
- Peng-Robinson.
- Van der Waals Model.

<1% drift between them.

Included in Star CCM+

Comparing the four gas models.

Drift between Van der Waals model (red) and experimental data (blue)
Problem description: pre-processing

Geometry:
- **CB’s (Pipes)**
- **MRB Side:**
- **MFB Side:**
- **Total length:** 10554 mm
- **Ø 43 mm**
- **CB’s + Sleeves:** 10252 mm

Boundary Conditions:
- **Windows:** MRB = 11.16 K; MFB = 17.77 K
- **CB’s (pipes):** T = 1.74 K

- **Metal thicknesses:** MRB: 4.00 K; MFB: 6.00 K

➤ **As a first approach** to the problem
➤ **Check validity of previous CFD studies**
➤ **Achieve a solution** for further simulations.

M. Gomez Marzoa

CFD team supports CERN development
19 May 2011
Problem description: pre-processing

Physics:
- Material properties = \(f(T) \)
- **Steady-state.**
- SST – K-omega turbulence model.
 - Low-Re approach
- Gravity (Natural Convection).
- **Coupled Solver.**
- Boundary layer solved (no wall functions applied).

Mesh:
- Polyhedral mesh in both ends.
- CB’s: cylindrical extrusion.
- Windows and metal thicknesses: extrusion
- Prism layer mesh near walls in fluid domain:
 - 16-20 layers, 1,2 stretching factor.

➤ **Number of cells: 6.6M**
Results: density field

67 mbar 0 deg (Horizontal)

<table>
<thead>
<tr>
<th>X (m)</th>
<th>Place</th>
<th>CB section ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.362</td>
<td>CB end MFB</td>
<td>1</td>
</tr>
<tr>
<td>8.362</td>
<td>CB @2m from MFB</td>
<td>2</td>
</tr>
<tr>
<td>5.262</td>
<td>CB Center</td>
<td>3</td>
</tr>
<tr>
<td>2.16</td>
<td>CB @2m from MRB</td>
<td>4</td>
</tr>
<tr>
<td>0.16</td>
<td>CB end MRB</td>
<td>5</td>
</tr>
</tbody>
</table>

Density in the centre of CB’s: 1.55 kg/m3

➤ *(P$_{ref}$ = 83 mbar): 1.94 kg/m3*
Results: validation

AXIAL DENSITY distribution

Desired \(\rho \) homogeneity: \(\Delta \rho = 10^{-3} \text{ kg/m}^3 \)

![Graph showing density distribution along the CB axis](image)

MASS VALIDATION

| Ref P | L where < \(\Delta \rho \) (m) | L(eff) (m) | |L| (m) |
|--------|---------------------------------|------------|----------|
| 67 mbar| 5.23 | 6.87 | 1.64 |
| 83 mbar| 4.81 | 6.67 | 1.86 |

\(L_{\text{eff}}(\text{cm}) = 778.6 - 1.33 \times P_{\text{dV}}@18K \)

Length where \(\Delta \rho = 10^{-3} \text{ kg/m}^3 \) SHORTER than expected using CAST’s \(L_{\text{eff}} \) formula.

SOLUTION VALIDITY:

- \(N \) (mols) experimentally measured vs. CFD value.
- Error < 3% for both reference Pressures
 - ACCURATE SOLUTION
Model Revision

• WHY?
 ➢ Converged solution ≠ Accurate solution (depends on how the problem is defined)

• CONSIDERED MODEL REVISIONS:
 1. Check **Geometry & Boundary conditions**
 ❖ Phenomena in real experiment:
 - Conduction along the pipe
 - Conduction from magnets supports
 - Window
 - **3He fluid**
 - Radiation from vacuum chamber walls @293K (Negligible)
 - Strongback Net

 2. Apply **SYMMETRY?**
 ❖ Symmetric BC’s & symmetry observed in previous simulations
 ❖ Slow rotation (0.3 deg/min) → Does not affect the gas (CHECKED)

Applied BC’s:
- **T inlet**
- **T CB**
- **T Window**
- **Cryo @1.8 K**
- **Save computation time**
Model revision: boundary conditions

- Computed solution = f(BC’s): values and locations.
 - Same numbers, different assumptions → DIFFERENT SOLUTION

- MESH:
 - Added metal Nets + coupling with Window foils
 - Improved where needed
 - Number of cells: 6.85 M (~ N_{cells} 1^{st} approach)

- Av. Running speed: 30s/it. @Cluster, NP: 32 for ~8300 its.
Results: density field

83 mbar
0 deg
(Horizontal)

<table>
<thead>
<tr>
<th>X (m)</th>
<th>Place</th>
<th>CB section ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.362</td>
<td>CB end MFB</td>
<td>1</td>
</tr>
<tr>
<td>8.362</td>
<td>CB @2m from MFB</td>
<td>2</td>
</tr>
<tr>
<td>5.262</td>
<td>CB Center</td>
<td>3</td>
</tr>
<tr>
<td>2.16</td>
<td>CB @2m from MRB</td>
<td>4</td>
</tr>
<tr>
<td>0.16</td>
<td>CB end MRB</td>
<td>5</td>
</tr>
</tbody>
</table>

Section along right CB (scaled in axial direction 1:30)

Density in the centre of CB’s: 1.86 kg/m³

Transversal Section in MRB volume.

DIFFERENT!

Previous model @83 mbar: 1.94 kg/m³
Results: validation

- **DENSITY FIELD: SAME TREND**
 - $\rho_{\text{CB centre}}$ is different from first model!

- **SOLUTION VALIDITY: OK!**
 - N (mols) experimental vs. CFD
 - Error < 0.7% (FIRST MODEL < 3%) → Closer to real situation

SUMMARY

- Better comprehension on the problem → Realistic approach to real system.
- **NEXT** → Perform requested steady simulations for tilted positions of the system (-6 to +6 deg).
- Continuous improvement and revision on the model.
CAST: CERN Axion Solar Telescope

3He Gas System CFD simulations

THANK YOU FOR YOUR ATTENTION!