

Some CFD simulations for the design of the FCC ventilation system

FCC tunnel design

Opt. 1: Øint: 6.0 m

FCC: machine tunnel

FCC: machine tunnel

Fluid properties: For the first considerations, **isothermal conditions*** assumed along the tunnel

Density (ρ)	1.225	kg/m ³
Kinematic viscosity (v)	1.79*10 ⁻⁵	m²/s

Tunnel properties:

Tunnel cross section	14.44 m ²	Wetted perimeter	26.74 m
Flow area at open curtain	11.98 m ²	Hydraulic diameter	2.16
Flow area at closed curtain	8.96 m ²		
Tunnel length	9100 m	Tunnel roughness	Hydraulically smooth

Flow properties:

ACH ~0.5	Volume flow rate	82333 m ³ /h
ACH ~1	Volume flow rate	164666 m ³ /h

* Geothermal gradient 2.54°C/100m and tunnel footprint raises a question about it. Max height difference 260m, max temperature difference 6.6°C, max density difference 0.027 kg/m³, which may cause a few Pa difference.

Three different handbook solution considered:

- Idelchik (1966) Handbook of Hydraulic Resistance, Coefficients of local resistance and of friction
- Miller (1990) Internal Flow Systems
- Roul, Dash (2012) Single-Phase and Two-Phase Flow Through Thin and Thick Orifices in Horizontal Pipes

There are two types of losses in the tunnel:

• Frictional pressure loss, all along the tunnel

$$\Delta p_f = f \frac{l}{D} \frac{\rho}{2} v^2$$

• Local pressure loss, at disturbances, like the fire curtain

$$\Delta p_l = K \frac{\rho}{2} v^2$$

Computed differently in textbooks, based on an **orifice** geometry.

Where p is pressure, f is friction coefficient, I is length of the tunnel, D is hydraulic diameter of the tunnel, p is density of air, v is mean velocity in the tunnel, K is loss coefficient.

From Miller: loss coefficient for an orifice

Analytical results:

In normal operating conditions only the structure is blocked

• For ~0.5 ACH (Air Change per Hour):

Frictional loss: ~100 Pa for the 9100 m section

Local loss: 0.46*50=23 Pa for 50 curtains (every 200 m)

Δp _l [Pa/curtain]	Idelchik	Miller	Roul and
	(1966)	(1990)	Dash (2012)
Only curtain structure blocked	2.0	0.46	0.46
Full fire curtain blocked	2.5	2.36	2.60

• For ~1 ACH (Air Change per Hour):

Frictional loss: ~360 Pa for the 9100 m section Local loss: 2*50=100 Pa for 50 curtains (every 200 m)

Δp _I [Pa/curtain]	Idelchik	Miller	Roul and
	(1966)	(1990)	Dash (2012)
Only curtain structure blocked	7.8	2	2
Full fire curtain blocked	10	9.4	10.4

Numerical considerations:

- ANSYS Fluent 15
- 3D simulations
- Periodic for frictional losses
- Mapped inlet profiles for local losses
- Only for the ~0.5 ACH, as these calculations are more time consuming

Numerical considerations:

9/28/2015

Example of flow structure:

9/28/2015

Comparison of results for 0.5 ACH:

Comparison with the Miller book (more recent, revised experiments):

	ANALYTICAL	NUMERICAL
	Miller (1990) –circular tunnel	CFD simulation – 3D simplified real
	with orifice	tunnel
Pressure gradient in empty tunnel	0.011 Pa/m	0.0107 Pa/m
Only curtain structure	0.46 Pa/curtain	0.61 Pa/curtain
Full fire curtain	2.36 Pa/curtain	2.51 Pa/curtain
Estimation for 9100 m section,		
normal operating conditions, 50	~125 Pa	~128 Pa
open curtains (every 200 m)		

The extra time for the numerical method for calculating the pressure drop only in the tunnel is not necessarily justified.

FCC: safety tunnel

- Parallel to the machine zone (see blue block), with a separate ventilation system.
- What air flow rate is needed to keep the two parallel ventilation systems with low dP between them?
- In the safety zone there is no abruption like the curtains, therefore no constant equilibrium is possible all along the tunnel.

Machine zone	Safety zone	
0.2 <u>1</u> 100200	96	ţ.

machine tunnel			
ACH	0.5	1	
pressure drop [Pa]	125	450	
pressure gradient [Pa/m]	0.011	0.039	
safety tunnel			
ACH	0.65	1.3	
pressure drop [Pa]	128	450	
pressure gradient [Pa/m]	0.014	0.049	

FCC: safety tunnel

machine tunnel			
ACH	0.5	1	
pressure drop [Pa]	125	450	
pressure gradient [Pa/m]	0.011	0.039	
safety tunnel			
ACH	0.65	1.3	
pressure drop [Pa]	125	450	
pressure gradient [Pa/m]	0.014	0.049	

Conclusions

- In normal operating conditions in the machine tunnel with 0.5 ACH (air change per hour) ~125 Pa pressure drop is expected in a 9100 m section accounting for both frictional and local (fire curtain structure) losses.
- Results based on analytical and numerical considerations are very similar.
- For the safety tunnel a ventilation of 0.65 ACH could result in a similar pressure drop for a 9100 m section.

Thank you for your attention!

9/28/2015

www.cern.ch

From Idelchik: resistance coefficient for a sharpedged orifice

$$K = \left(1 + 0.707 \sqrt{1 + \frac{F_0}{F_1}} - \frac{F_0}{F_2}\right)^2$$

 F_0 – area of the narrowest section

- F_1 area of the tunnel before
- F_2 area of the tunnel after

$$\Delta p_l = K \frac{\rho}{2} v^2$$

From Roual and Dash:

$$\Delta p_l = \frac{\rho}{2} v^2 \left(\frac{1}{\sigma \sigma_c} - 1\right)^2$$

- Flow area ratio: $\sigma = (d/D)^2$
- Contraction coefficient by Chisholm:

$$\sigma_c = \frac{1}{0.639(1-\sigma)^{0.5}+1}$$

