

# Computational Fluid Dynamics team supports CERN development

# CERN May 19th 2011









# Who are we?

- The CFD activity started in EN/CV group around **1993**. From that on a group of young engineers (technical students, fellows, project associates, UPAS, trainee programmes) took over this activity spending short to medium periods at CERN.
- In 2003 when the TS department was created, the Cooling and Ventilation Group decided to structure this activity into a formal team inside the Detector Cooling Section.
- Nowadays, the team counts with an average of three-four members spending between one and five years in the team.
- The team uses STAR-CD and STAR-CCM+, in the last year we moved all our news project to STAR-CCM+ and, in the next future, to OpenFOAM.









| Natural and forced<br>convection heat transfer | ATLAS 3D HX15 and muon chambers cooling,<br>ALICE Muon, ALICE L3 ventilation                                                                             | Some chamber need an additional cooling<br>source: a thermal screen will be<br>implemented.<br>Definition of the ventilation scheme of new<br>L3 rails.                                                                                           |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air cooling                                    | <b>RF-Cavity cooling, CNGS Horn</b> and Reflector air cooling analysis, <b>LINAC4</b> ventilation, <b>Bdg 513</b> ventilation of the grid computer room. | Cavity geometry design has been modified.<br>Additional gaps in the shielding walls,<br>trenches on the target chamber floor.<br>Number and position of ventilator diffuser<br>has been optimized. Server Rack cold<br>corridors has been closed. |
| Water cooling                                  | SPS magnet cooling analysis                                                                                                                              | Exact definition of the heat power evacuated by cooling water and air.                                                                                                                                                                            |
| Safety                                         | <b>CNGS tunnel</b> : flow analysis in case of decay tunnel cap rupture. <b>The Globe</b> : fire effect simulation, transient temperature distribution.   | Special duct installation to resist to high pressure and move the high speed point in a safe zone of ECA4 cavern.                                                                                                                                 |
| Gas distribution                               | <b>ATLAS Inner Tracker</b> $CO_2$ and $N_2$ flow analysis.<br>Flushing time estimation before cooling                                                    | Definition of the inlet points position and the time to complete the flush.                                                                                                                                                                       |
| Pollutant dispersion                           | <b>ISOLDE</b> activated gas decay, <b>HirRadMat</b> activated gas flashing time.                                                                         | Define the time needed to flash the tunnel before human access.                                                                                                                                                                                   |
| Humidity distribution                          | CMS Tracker flow analysis.                                                                                                                               | Reduction of inlet points from 8 to 1.                                                                                                                                                                                                            |





| Natural and forced<br>convection heat transfer | ATLAS 3D HX15 and muon chambers cooling,<br>ALICE Muon, ALICE L3 ventilation                                                                             | Some chamber need an additional cooling<br>source: a thermal screen will be<br>implemented.<br>Definition of the ventilation scheme of new<br>L3 rails.                                                             |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air cooling                                    | <b>RF-Cavity cooling, CNGS Horn</b> and Reflector air cooling analysis, <b>LINAC4</b> ventilation, <b>Bdg 513</b> ventilation of the grid computer room. | Cavity geometry design has been modified.<br>Additional gaps in the shielding walls,<br>trenches on the target chamber floor.<br>Number and position of ventilator diffuser<br>has been optimized. Server Rack cold |
| ALICE L3- V                                    | entilation Rails                                                                                                                                         | corridors has been closed.                                                                                                                                                                                          |
|                                                |                                                                                                                                                          | Exact definition of the heat power evacuated by cooling water and air.                                                                                                                                              |
|                                                | ase of decay tunnel<br>ect simulation,                                                                                                                   | Special duct installation to resist to high pressure and move the high speed point in                                                                                                                               |
| Poliutant dispersion                           | ATLAS UX15 C<br>ATLAS UX15 C<br>Gas flashing time.                                                                                                       | avern<br><i>Temperature (C)</i><br>32.000<br>29.000<br>23.000                                                                                                                                                       |
| Humidity distribution                          | CMS Tracker flow analysis.                                                                                                                               | 20.000                                                                                                                                                                                                              |





| Natural and forced<br>convection heat transfer | ATLAS 3D HX15 and muon chambers cooling,<br>ALICE Muon, ALICE L3 ventilation                                                                             | Some chamber need an additional cooling<br>source: a thermal screen will be<br>implemented.<br>Definition of the ventilation scheme of new<br>L3 rails.                                                                                           |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air cooling                                    | <b>RF-Cavity cooling, CNGS Horn</b> and Reflector air cooling analysis, <b>LINAC4</b> ventilation, <b>Bdg 513</b> ventilation of the grid computer room. | Cavity geometry design has been modified.<br>Additional gaps in the shielding walls,<br>trenches on the target chamber floor.<br>Number and position of ventilator diffuser<br>has been optimized. Server Rack cold<br>corridors has been closed. |
| Water cooling                                  | SPS magnet cooling analysis LINAC-4<br>Klystron Hall                                                                                                     |                                                                                                                                                                                                                                                   |
| Safety                                         | <b>CNGS tunnel</b> : flow analysis in case of de cap rupture. <b>The Globe</b> : fire effect simu transient temperature distribution.                    |                                                                                                                                                                                                                                                   |
| Building 513                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                   |
|                                                |                                                                                                                                                          | Reduction of inlet points from 8 to 1.                                                                                                                                                                                                            |
| M.Battistin                                    | CFD team supports CERN development                                                                                                                       | 5                                                                                                                                                                                                                                                 |

19 May 2011





| Natural and forced<br>convection heat transfer                           | ATLAS 3D HX15 and muon chambers cooling,<br>ALICE Muon, ALICE L3 ventilation                                                                             | Some chamber need an additional cooling<br>source: a thermal screen will be<br>implemented.<br>Definition of the ventilation scheme of new<br>L3 rails.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air cooling                                                              | <b>RF-Cavity cooling, CNGS Horn</b> and Reflector air cooling analysis, <b>LINAC4</b> ventilation, <b>Bdg 513</b> ventilation of the grid computer room. | Cavity geometry design has been modified.<br>Additional gaps in the shielding walls,<br>trenches on the target chamber floor.<br>Number and position of ventilator diffuser<br>has been optimized. Server Rack cold<br>corridors has been closed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Water cooling                                                            | SPS magnet cooling analysis                                                                                                                              | Exact definition of the heat power evacuated by cooling water and air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Safety<br>Gas distribution<br>Pollutant dispersio<br>Humidity distributi | CNGS tuppel: flow analysis in case of docay tuppel                                                                                                       | Special duct installation to resist thigh<br>point in<br>Pro-STAR 3.2.<br>9-MA-06<br>TEMPERATURE<br>REL TO TREF<br>REL TO TREF<br>REL TO TREF<br>REX 102<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.03<br>47.04<br>47.04<br>47.04<br>47.03<br>47.04<br>47.04<br>47.04<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47.05<br>47. |



| CFD team                                       |                                                                                                                                                        |                                                                                                                                                                                                                  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFD i                                          | s usef                                                                                                                                                 | at CERN                                                                                                                                                                                                          |
| Natural and forced<br>convection heat transfer | ATLAS 3D HX1<br>ALICE Muon, /                                                                                                                          | chamber need an additional cooling<br>e: a thermal screen will be<br>mented.<br>tion of the ventilation scheme of ne<br>ls.                                                                                      |
| Air cooling                                    | RF-Cavity coo<br>cooling analysis<br>ventilation of th                                                                                                 | v geometry design has been modifie<br>onal gaps in the shielding walls,<br>nes on the target chamber floor.<br>er and position of ventilator diffuser<br>een optimized. Server Rack cold<br>ors has been closed. |
| Water cooling                                  | SPS magnet of                                                                                                                                          | definition of the heat power ated by cooling water and air.                                                                                                                                                      |
| Safety                                         | <b>CNGS tunnel</b> : flow analysis in case of decay tunnel cap rupture. <b>The Globe</b> : fire effect simulation, transient temperature distribution. | Special duct installation to resist to high pressure and move the high speed point i a safe zone of ECA4 cavern.                                                                                                 |
| Gas distribution                               | <b>ATLAS Inner Tracker</b> $CO_2$ and $N_2$ flow analysis.<br>Flushing time estimation before cooling                                                  | Definition of the inlet points position and the time to complete the flush.                                                                                                                                      |
| Pollutant dispersion                           | <b>ISOLDE</b> activated gas decay, <b>HirRadMat</b> activated gas flashing time.                                                                       | Define the time needed to flash the tunne before human access.                                                                                                                                                   |
| Humidity distribution                          | <b>CMS Tracker</b> flow analysis.                                                                                                                      | Reduction of inlet points from 8 to 1.                                                                                                                                                                           |

CERN

in











| Natural and forced<br>conv<br>Air c<br>Wate<br>Safe | ATLAS 3D HX15 and muon chambers cooling,                                                              | some chamber need an additional cooling<br>new<br>ified.<br>ser<br>h<br>n<br>h<br>nt in |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Gas distribution                                    | <b>ATLAS Inner Tracker</b> $CO_2$ and $N_2$ flow analysis.<br>Flushing time estimation before cooling | Definition of the inlet points position and the time to complete the flush.             |
| Pollutant dispersion                                | <b>ISOLDE</b> activated gas decay, <b>HirRadMat</b> activated gas flashing time.                      | Define the time needed to flash the tunnel before human access.                         |
| Humidity distribution                               | <b>CMS Tracker</b> flow analysis.                                                                     | Reduction of inlet points from 8 to 1.                                                  |











# What we do?

- Mission of the team is to give support to LHC machine and detectors performing CFD studies during the prototype, design, development and operation phases of their components
- Resources

- Example studies:
  - CAST
    - Assessment of measurement uncertainty
  - RF Cavity cooling
    - Numerical prototyping aiding the design
- CFD evolution at CERN



