

CAST: CERN Axion Solar Telescope ³He Gas System CFD simulations

- 1. Technical Specifications: Gas System.
- 2. Problem Description.
- 3. Results.
- 4. Model Revision.
 - Validation
- 5. Summary.

Technical specifications: Gas System

CAST: detects **solar axions** \rightarrow **LHC Magnet** Magnetic field: Conversion from **axions into X-Rays**

occurs in closed volume filled with ³He gas at low T (~1.8K) and low P (~10-100 mbar)

•Parts outside cryostat receive heat from environment \rightarrow ³He gas heats up: convective flow.

REQUIREMENTS: uniform density field along CB's (Effective measure length)

- > Provide ³**He** density plots in CB's.
- > Verify validity of existing CFD studies.
- > Study model's movement: tilting and rotation.

Expected phenomena:

• Strong **buoyancy-driven flow** in **CB ends:** T_{windows}, T_{Metal} >T³He.

Problem description: gas physics

Reference ³He conditions:

- P_{Ref} <140 mbar
- Static $T_{3He} \sim 1.8 \text{ K}$
- P, T far from Ideal Gas range of applicability.

Real Gas vs. Ideal Gas: eq. of state

- Virial Equation (physical description)
- Peng-Robinson.
- Van der Waals Model.

Problem description: gas physics

Problem description: pre-processing

CFD team supports CERN development 19 May 2011

Problem description: pre-processing

Physics:

- Material properties = **f(T)**
- Steady-state.
- SST K-omega turbulence model.
 - Low-Re approach
- Gravity (Natural Convection).
- Coupled Solver.
- Boundary layer solved (no wall functions applied).

Mesh:

- Polyhedral mesh in both ends.
- **CB's:** cylindrical extrusion.
- Windows and metal thicknesses: extrusion
- Prism layer mesh near walls in fluid domain:
 - 16-20 layers, 1,2 stretching factor.
- > Number of cells: 6.6M

Results: density field

Results: validation

MASS VALIDATION

SOLUTION VALIDITY:

- N (mols) experimentally measured vs. \geq CFD value.
- **Error < 3%** for both reference Pressures \triangleright
 - ACCURATE SOLUTION *

Model Revision

• WHY?

> Converged solution \neq Accurate solution (depends on how the problem is defined)

CONSIDERED MODEL REVISIONS:

- Computed solution = f(BC's): values and locations.
 - > Same numbers, different assumptions → DIFFERENT SOLUTION

MESH:

٠

- > Added metal Nets + coupling with Window foils
- Improved where needed
- > Number of cells: 6.85 M (~ N_{cells} 1st approach)
- Av. Running speed: 30s/it. @Cluster, NP: 32 for ~8300 its.

Net mesh details.

Results: density field

Results: validation

- DENSITY FIELD: SAME TREND
 - **ρ**_{CB centre} is **different** from first model!
 - SOLUTION VALIDITY: OK!
 - > N (mols) experimental vs. CFD

Model	Ref P	L where < Δρ (m)	L(eff) (m)	ΔL (m)
First	83 mbar	4,81	6.67	1,86
Revised		4.80		1.87

Error < 0.7% (FIRST MODEL < 3%) \rightarrow Closer to real situation

SUMMARY

- Better comprehension on the problem \rightarrow Realistic approach to real system.
- **NEXT** \rightarrow Perform requested **steady simulations** for tilted positions of the system (-6 to +6 deg).
- Continuous improvement and revision on the model.

CAST: CERN Axion Solar Telescope

³He Gas System CFD simulations

THANK YOU FOR YOUR ATTENTION!

