

Computational Fluid Dynamic at CERN

TS/CV/DC CFD Team 15th April 2005 11h00 AT Auditorium

Michele Battistin, Sara Correia, Moritz Kuhn, Anna Mueller, Antonio Romanazzi, Vaclav Vins, Izabella Wichrowska-Polok

F

We want to let you know...

- What is CFD
- Which kind of studies can be done
- Opportunities
- The CFD team at CERN
- How you can access to this service

IS

Computational Fluid Dynamics

- ✓ Computational Fluid Dynamics (CFD) allows to develop 3D models and find numerical solution of thermal and fluid flow problems in confined spaces
- ✓ The basis of computational fluid dynamics is the reduction of the continuum differential equations governing the dynamics of the fluid into a system of algebraic equations at a finite number of "grid" points, and obtaining the solution to these equations there.

CFD is useful in many fields at CERN

Natural and forced convection heat transfer	ATLAS muon chambers, ALICE L3 ventilation, ALICE Muon	Some chamber need an additional cooling source: a thermal screen will be implemented
Air cooling	CNGS Horn and Reflector air cooling analysis, LHCb electronics cooling. Bdg 513 ventilation of the grid computer room.	Additional gaps in the shielding walls, trenches on the target chamber floor
Water cooling	SPS magnet cooling analysis	Exact definition of the heat power evacuated by cooling water and air
Safety	CNGS tunnel : flow analysis in case of decay tunnel cap rupture. The Globe: fire effect simulation, transient temperature distribution.	Special duct installation to resist to high pressure and move the high speed point in a safe zone of ECA4 cavern
Gas distribution	ATLAS Inner Tracker CO_2 and N_2 flow analysis. Flushing time estimation before cooling	Definition of the inlet points position and the time to complete the flush.
Humidity distribution	CMS Tracker flow analysis.	Reduction of inlet points from 8 to 1.

Opportunities...

- CFD is more and more integrated in the design tools
 - Automatic meshing (boundary layer)
 - Model/surface importation
 - Subroutine facilities
 - CAD integration (Catia Star C++)
 - New polyhedra meshing technique -
- Meshing time (and cost) has dramatically decreased
- PC speed and parallel calculation have reduced the numerical solution time (and cost)
- LHC Grid •
- Interface more and more user friendly
- CFD more and more cheap... but: •

The tool has an easy access and gives always a result...

TPS

...specific knowledge is required

- Efficiency to build the right model
- Selection of the right numerical solver
- Sensibility to result interpretation
- ...training
- ...experience
- ...knowledge and problem sharing

CV group has a CFD team since 1993

TS/CV/DC CFD Team

M. Battistin

15th April 2005 - EDMS 581908

Presentations of

Antonio Vaclav Anna Izabella Sara Moritz (Michele)

ROUT DEPARTMENT

...time to result and cost

- Model dimension is a compromise between accuracy and time to result
- Most of the projects take about <u>1 month</u> of calculation time per case
- > A project has an average of 6 cases
- > CFD team will estimate time and cost in the "Numerical Analysis Request" document.

More information on cfd-studies.web.cern.ch

Questions???

CHNICHI B